Soal Pertidaksamaan Kuadrat - Linear dan Kuadrat - Kuadrat
Nama : Hanna Kamila M. (16)
Kelas : X IPS 3
Soal Pertidaksamaan Kuadrat - Linear dan Kuadrat - Kuadrat
1. Gambarlah daerah penyelesaian pertidaksamaan kuadrat y > x2 – 8x + 12
Jawab
(1) Tititk potong dengan sumbu-X syarat y =0
x2 – 8x + 12 = 0
(x – 6)(x – 2) = 0
x = 6 dan x = 2 Titik potongnya (2, 0) dan (6,0)
(2) Tititk potong dengan sumbu-Y syarat x =0
y = x2 – 8x + 12
y = (0)2 – 8(0) + 12
y = 12 Titik potongnya (0, 12)
(3) Menentukan titik minimum fungsi y = x2 – 8x + 12
(4) Gambar daerah penyelesaiannya (Daerah yang diarsir adalah daerah penyelesaian)2. Gambarlah daerah penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8 dalam tata koordinat Cartesius,Jawab:
Pertama akan digambar daerah penyelesaian 2x + 3y ≥ 12
Selanjutnya digambar juga daerah penyelesaian y ≤ –x2 + 2x + 8, dengan langkah langkah :
Menentukan tititk potong dengan sumbu-X syarat y = 0
–x2 + 2x + 8 = 0
x2 – 2x – 8 = 0
(x – 4)(x + 2) = 0
x = –2 dan x = 4 .
Titik potongnya (–2 0) dan (4, 0)
Menentukan tititk potong dengan sumbu-Y syarat x = 0
y = –x2 + 2x + 8
y = –(0)2 + 2(0) + 8
y = 8 . Titik potongnya (0, 8)
Menentukan titik maksimum fungsi y = –x2 + 2x + 8
Menggambar daerah penyelesaiannya (Daerah yang diarsir adalah daerah penyelesaian)
Irisan dari kedua daerah penyelesaian tersebut merupakan penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8
Gambar daerahnya adalah sebagai berikut
4. Gambar daerah penyelesaian pertidaksamaan y ≤ –x2 + 6x – 8 .
(1) Tititk potong dengan sumbu-X syarat y =0
–x2 + 6x – 8 = 0
x2 – 6x + 8 = 0
(x – 4)(x – 2) = 0
x = 4 dan x = 2
Titik potongnya (4, 0) dan (2, 0)
(2) Tititk potong dengan sumbu-Y syarat x =0
y = –x2 + 6x – 8
y = –(0)2 + 6(0) – 8
y = –8
Titik potongnya (0, –8)
(3) Menentukan titik maksimum fungsi y = –x2 + 6x – 8
(4) Gambar daerah penyelesaiannya
(Daerah yang diarsir adalah daerah penyelesaian)
Daerah penyelesaian kedua pertidaksamaan itu adalah irisan dua daerah penyelesaian masing-masing pertidaksamaannya, yakni:
5. Gambarlah kedua pertidaksamaan kuadrat berikut ini dalam satu sistem koordinat Cartesius, kemudian tentukan daerah penyelesaiannya
y > x2 – 9
y ≤ –x2 + 6x – 8
Jawab :
a. Gambar daerah penyelesaian pertidaksamaan y > x2 – 9
(1) Tititk potong dengan sumbu-X syarat y =0
x2 – 9 = 0
(x + 3)(x – 3) = 0
x = –3 dan x = 3
Titik potongnya (–3, 0) dan (3, 0)
(2) Tititk potong dengan sumbu-Y syarat x =0
y = x2 – 9
y = (0)2 – 9
y = –9
Titik potongnya (0, –9)
(3) Menentukan titik minimum fungsi y = x2– 9
(4) Gambar daerah penyelesaiannya
(Daerah yang diarsir adalah daerah penyelesaian)
Komentar
Posting Komentar