Soal Persamaan Kuadrat-Linear dan Kuadrat-Kuadrat

Nama : Hanna Kamila M. (16)

Kelas : X IPS 3

Tanggal : 22 September 2020


Soal Persamaan Kuadrat-Linear dan Kuadrat-Kuadrat

Sistem persamaan linear dan kuadrat atau disingkat SPLK adalah sistem persamaan yang terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua. Contoh SPLK adalah sebagai berikut.

y = 2  x ………………. Persamaan (1)
y = x2  3x + 2 ……… Persamaan (2)

1. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
y = x2  1
x  y = 3
Penyelesaian:
Persamaan x  y = 3 dapat kita tulis ulang menjadi bentuk berikut.
y = x  3
subtitusikan y = x  3 ke dalam persamaan y = x2  1 sehingga kita peroleh:
 x  3 = x2  1
 x  3 = x2  1
 x2  x  1 + 3 = 0
 x2  x + 2 = 0
Persamaan kuadrat di atas sulit untuk difaktorkan. Jika kita hitung nilai diskriminannya dengan nilai a = 1, b = 1, dan c = 2, maka kita peroleh:
D = b2  4ac
D = (1)2  4(1)(2)
D = 1  8
D = 7
Karena diskriminannya negatif (D < 1) maka persamaan kuadrat itu tidak memiliki penyelesaian. Oleh karena itu, SPLK di atas tidak memiliki penyelesaian sehingga himpunan penyelesaiannya dapat ditulis . Interpretasi geometri dari SPLK ini adalah tidak adanya titik singgung maupun titik potong antara parabola dan garis lurus. Hal ini dapat kalian lihat pada gambar di bawah ini.
grafik penyelesaian SPLK (sistem persamaan linear dan kuadrat)
2. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
x + y + 2 = 0
y = x2  x  2
Penyelesaian:
Persamaan x + y + 2 = 0 dapat kita tuliskan sebagai berikut.
y = x  2
Subtitusikan nilai y = x  2  ke persamaan y = x2  x  2 sehingga diperoleh:
 x  2 = x2  x  2
 x2  x + x  2 + 2 = 0
 x2 = 0
 x = 0
Subtitusikan nilai x = 0 ke persamaan y = x  2 sehingga diperoleh:
 y = (0)  2
 y = 2
Jadi, himpunan penyelesaiannya adalah {(0, 2)}. Tafsiran geometrinya berupa titik singgung antara garis lurus dan kurva parabola, yaitu di titik (0, 2) seperti yang ditunjukkan pada gambar berikut ini.
grafik penyelesaian SPLK (sistem persamaan linear dan kuadrat)
3. Carilah himpunan penyelesaian dari tiap sistem persamaan linear dan kuadrat (SPLK) berikut ini, kemudian buatlah grafik penyelesaiannya (sketsa tafsiran geometri).
a. y = x  1 dan y = x2  3x + 2
b. y = x  3 dan y = x2  x  2
c. y = 2x + 1 dan y = x2  4x + 3
Jawab:
a. Subtitusikan bagian linear y = x  1 ke bagian kuadrat y = x2  3x + 2, sehingga diperoleh:
 x  1 = x2  3x + 2
 x2  3x  x + 2 + 1 = 0
 x2  4x + 3 = 0
 (x  1)(x  3) = 0
 x = 1 atau x = 3
Nilai x = 1 atau x = 3 disubtitusikan ke persamaan y = x  1.
Untuk x = 1 diperoleh y = 1  1 = 0  (1, 0)
Untuk x = 3 diperoleh y = 3  1 = 2  (3, 2)
Jadi, himpunan penyelesaiannya adalah {(1,0), (3,2)}. Tafsiran geometrinya, garis y = x  1 memotong parabola y = x2  3x + 2 di dua titik yang berlainan yaitu di (1, 0) dan di (3, 2). Perhatikan gambar di bawah ini.
contoh soal grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) berbentuk eksplisit
b. Subtitusikan y = x  3 ke y = x2  x  2 sehingga diperoleh:
 x  3 = x2  x  2
 x2  x  x  2 + 3 = 0
 x2  2x + 1 = 0
 (x  1)2 = 0
 x = 1
Nilai x = 1 disubtitusikan ke persamaan y = x  3 sehingga didapatkan
 y = 1  3 = 2  (1, 2)
Jadi, himpunan penyelesaiannya adalah {(1, 2)}. Tafsiran geometrinya, garis y = x  3 menyinggung parabola y = x2  x  2 di titik (1, 2). Perhatikan gambar di bawah ini.
contoh soal grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) berbentuk eksplisit
c. Subtitusikan y = 2x + 1 ke  y = x2  4x + 3, diperoleh
 2x + 1 = x2  4x + 3
 x2  4x + 2x + 3  1 = 0
 x2  2x + 2 = 0
Persamaan kuadrat ini tidak mempunyai akar real, karena D = (2)2  4(1)(2) = 4 < 0. Jadi, himpunan penyelesaiannya adalah himpunan kosong, ditulis . Tafsiran geometrinya, garis y = 2x + 1 tidak memotong maupun menyinggung parabola y = x2  4x + 3. Perhatikan gambar berikut.
contoh soal grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) berbentuk eksplisit
4. Carilah himpunan penyelesaian dari SPLK berikut ini.
x + y  1 = 0 ……….bagian linear
x2 + y2  25 = 0 …..bagian kuadrat berbentuk implisit yang tak dapat difaktorkan
Jawab:
Pada bagian persamaan linear, kita nyatakan y dalam x yaitu sebagai berikut.
 x + y  1 = 0
 y = 1  x

Lalu subtitusikan persamaan y = 1  x ke persamaan kuadrat x2 + y2  25 = 0, sehingga kita peroleh:
 x2 + y2  25 = 0
 x2 + (1  x)2  25 = 0
 x2 + 1  2x + x2  25 = 0
 2x2  2x  24 = 0
 x2  x  12 = 0
 (x + 3)(x  4) = 0
 x = 3 atau x = 4

Setelah nilai-nilai x kita peroleh, selanjutnya subtitusikan x = 3 atau x = 4 ke persamaan linear x + y  1 = 0 yaitu sebagai berikut.
 untuk x = 3 diperoleh:
 x + y  1 = 0
 3 + y  1 = 0
 y  4 = 0
 y = 4
Kita peroleh himpunan penyelesaian (3, 4).
 untuk x = 4 diperoleh:
 x + y  1 = 0
 4 + y  1 = 0
 y + 3  = 3
 y = 4
Kita peroleh himpunan penyelesaian (4, 3).

Jadi, himpunan penyelesaiannya adalah {(3, 4), (4, 3)}. Anggota-anggota dari himpunan penyelesaian SPLK tersebut dapat ditafsirkan sebagai koordinat titik potong garis x + y = 1 dengan lingkaran x2 + y2 = 25. Perhatikan gambar berikut ini.
grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) dengan bagian kuadrat berbentuk implisit
5. Carilah himpunan penyelesaian dari SPLK berikut ini.
2x + 3y = 8
4x2  12xy + 9y2 = 16
Jawab:
Bagian kuadrat dapat difaktorkan sebagai berikut.
 4x2  12xy + 9y2 = 16
 (2x  3y)2  16 = 0
 (2x  3y + 4)(2x  3y  4) = 0
 2x  3y + 4 = 0 atau 2x  3y  4 = 0
Jika hasil ini digabungkan dengan persamaan linear semula, maka akan diperoleh dua SPLDV, yaitu sebagai berikut.
2x + 3y = 8
………. SPLDV pertama
2x  3y + 4 = 0

2x + 3y = 8
………. SPLDV kedua
2x  3y  4 = 0

Selanjutnya masing-masing SPLDV itu diselesaiakan dengan menggunakan salah satu dari metode penyelesaian SPLDV yang telah dibahas dalam artikel sebelumnya. Sebagai contoh, kita gunakan metode gabungan.
Menyelesaikan SPLDV  pertama
Dengan menggunakan metode eliminasi, maka dari sistem persamaan 2x + 3y = 8 dan 2x  3y + 4 = 0 kita peroleh nilai y sebagai berikut.
2x + 3y
=
8

2x  3y
=
4
6y
=
12
y
=
2

Kemudian subtitusikan nilai y = 2 ke persamaan 2x + 3y = 8 sehingga diperoleh nilai x sebagai berikut.
 2x + 3(2) = 8
 2x + 6 = 8
 2x = 8  6
 2x = 2
 x = 1
Dengan demikian, SPLDV pertama ini memberikan penyelesaian (1, 2).
Menyelesaikan SPLDV  Kedua
Dengan menggunakan metode eliminasi, maka dari sistem persamaan 2x + 3y = 8 dan 2x  3y  4 = 0 kita peroleh nilai y sebagai berikut.
2x + 3y
=
8

2x  3y
=
4
6y
=
4
y
=
4/6

y
=
2/3

Kemudian subtitusikan nilai y = 2/3 ke persamaan 2x + 3y = 8 sehingga diperoleh nilai x sebagai berikut.
 2x + 3(2/3) = 8
 2x + 6/3 = 8
 2x + 2 = 8
 2x = 8  2
 2x = 6
 x = 3
Dengan demikian, SPLDV pertama ini memberikan penyelesaian (3, 2/3).
Jadi, himpunan penyelesaian SPLK tersebut adalah {(1, 2), (3, 2/3)}.

6. Carilah himpunan-himpunan penyelesaian dari sistem persamaan linear dan kuadrat berikut ini.
x + y = 0 ……….. bagian linear
x2 + y2  8 = 0 ….. bagian kuadrat berbentuk implisit yang tak dapat difaktorkan
Jawab:
Pada bagian persamaan linear, kita nyatakan y dalam x, yaitu sebagai berikut.
 x + y = 0
 y = x

Lalu subtitusikan persamaan y = x , ke persamaan kuadrat x2 + y2  8 = 0 sehingga kita peroleh:
 x2 + y2  8 = 0
 x2 + (x)2  8 = 0
 x2 + x2  8 = 0
 2x2  8 = 0
 x2  4 = 0
 (x  2)(x + 2) = 0
 x = 2 atau x = 2

Setelah nilai-nilai x kita peroleh, selanjutnya subtitusikan x = 2 atau x = 2 ke persamaan linear x + y = 0, yaitu sebagai berikut.
 untuk x = 2 diperoleh:
 x + y = 0
 2 + y = 0
 y = 2
Kita peroleh himpunan penyelesaian (2, 2)
 untuk x = 2 diperoleh:
 x + y = 0
 2 + y = 0
 y =  2
Kita peroleh himpunan penyelesaian (2, 2)

Jadi, himpunan penyelesaiannya adalah {(2, 2), (2, 2)}. Anggota-anggota dari himpunan penyelesaian SPLK tersebut dapat ditafsirkan sebagai koordinat titik potong garis x + y = 0 dengan lingkaran x2 + y2 = 8. Perhatikan gambar berikut ini.
grafik penyelesaian SPLK (Sistem Persamaan Linear dan Kuadrat) implisit yang tidak dapat difaktorkan
7. Carilah himpunan penyelesaian dari SPLK berikut ini.
x + y  1 = 0
x2 + y2  25 = 0
Jawab:
Pada bagian persamaan linear, kita nyatakan y dalam x yaitu sebagai berikut.
 x + y  1 = 0
 y = 1  x

Lalu subtitusikan persamaan y = 1  x, ke persamaan kuadrat x2 + y2  25 = 0, sehingga kita peroleh:
 x2 + y2  25 = 0
 x2 + (1  x)2  25 = 0
 x2 + 1  2x + x2  25 = 0
 2x2  2x  24 = 0
 x2  x  12 = 0
 (x + 3)(x  4) = 0
 x = 3 atau x = 4

Setelah nilai-nilai x kita peroleh, selanjutnya subtitusikan x = 3 atau x = 4 ke persamaan linear x + y  1 = 0 yaitu sebagai berikut.
 untuk x = 3 diperoleh:
 x + y  1 = 0
 3 + y  1 = 0
 y  4 = 0
 y = 4
Kita peroleh himpunan penyelesaian (3, 4).
 untuk x = 4 diperoleh:
 x + y  1 = 0
 4 + y  1 = 0
 y + 3  = 3
 y = 4
Kita peroleh himpunan penyelesaian (4, 3).
Jadi, himpunan penyelesaiannya adalah {(3, 4), (4, 3)}.
Nah, pada kesempatan kali ini kita akan menyajikan kumpulan contoh soal dan pembahasan tentang sistem persamaan linear dan kuadrat (SPLK) dengan menggunakan berbagai macam metode. Silahkan disimak baik-baik.

Persamaan linier dua variabel x dan y digabungkan dengan persamaan yang mengandung x2 atau y2 SPLK dan SPLDV. 

Soal No. 1
Diberikan dua buah persamaan yaitu persamaan linear dua variable dan kuadrat sebagai berikut:

(i) y = 2x + 3

(ii) y = x2 − 4x + 8

Tentukan himpunan penyelesaian (Hp) dari kedua persamaan tersebut di atas!

Pembahasan
Substitusikan y dari persamaan (i) ke y pada persamaan (ii), atau sebaliknya dari (ii) ke (i), lanjutkan dengan operasi aljabar. 
x2 − 4x + 8 = 2x + 3 
x2 − 4x + 8 − 2x − 3 = 0
x2 − 6x + 5 = 0

Berikutnya faktorkan:
x2 − 6x + 5 = 0
(x − 1)(x − 5) = 0

Dapatkan nilai x yang pertama:
x − 1 = 0 
x = 1

Dapatkan nilai x yang kedua:
x − 5 = 0 
x = 5

Berikutnya mencari nilai-nilai dari y dengan substitusi nilai x ke persamaan (i):
Untuk x = 1 maka
y = 2x + 3
y = 2(1) + 3
y = 2 + 3
y = 5

Dari sini didapatkan pasangan (x, y) yaitu (1, 5)

Untuk x = 5 maka
y = 2x + 3
y = 2(5) + 3
y = 10 + 3
y = 13

Dari sini didapatkan pasangan (x, y) yaitu (5, 13)

Sehingga himpunan penyelesaiannya Hp :{(1, 5), (5, 13)}

Jika lupa bagaimana cara memfaktorkan, bisa dibaca lagi.

Soal No. 2
Diberikan dua buah persamaan sebagai berikut:
(i) y = 5x + 4
(ii) y = x2 + 13x − 16

Pembahasan
x2 + 13x − 16 = 5x + 4
x2 + 13x − 16 − 5x − 4 = 0
x2 + 8x − 20 = 0
(x + 10)(x − 2) = 0

Nilai x yang pertama
x + 10 = 0
x = − 10

Nilai x yang kedua
x − 2 = 0
x = 2

Nilai-nilai y, dari persamaan pertama:
Untuk x = − 10 didapat nilai y
y = 5x + 4
y = 5(−10) + 4 = − 46

Untuk x = 2, didapat nilai y
y = 5x + 4
y = 5(2) + 4 = 14

Hp : {(− 10, − 46), (2, 14)}

Bagaimana jika SPLK bagian kuadratnya mengandung bentuk implisit yang dapat difaktorkan? Seperti contoh berikutnya.

Soal No. 3
Diberikan dua buah persamaan sebagai berikut:
(i) x − y = 5
(ii) x2 − 6yx + 9y2 − 9 = 0

Tentukan himpunan penyelesaian dari persamaan-persamaan di atas!

Pembahasan
(i) x − y = 5
(ii) x2 − 6yx + 9y2 − 9 = 0

Terlebih dahulu faktorkan persamaan kuadratnya, ada beberapa cara untuk memfaktorkan bentuk "kuadrat dalam kuadrat" seperti bentuk di atas, salah satunya sebagai berikut:

Ingat kembali bentuk ax2 + bc + c = 0 . Jika diterapkan pada persamaan (ii) maka didapat nilai a, b dan c sebagai berikut:
x2 − 6yx + 9y2 − 9 = 0
a = 1
b = − 6y
c = 9y2 − 9



Sehingga:
x2 − 6yx + 9y2 − 9 = 0
(x − 3y − 3)(x − 3y + 3) = 0

Dari pemfaktoran ini kita dapat dua persamaan baru yaitu:
x − 3y − 3 = 0 .....(iii)
x − 3y + 3 = 0 .....(iv)

Dari persamaan (ii) dan (iii)
x − y = 5
x − 3y = 3
_________   _
2y = 2
y = 1

x − y = 5
x − 1 = 5
x = 6

Dari persamaan (ii) dan (iv)
x − y = 5
x − 3y = − 3
___________   _
2y = 8
y = 4

x − y = 5
x − 4 = 5
x = 9

Sehingga penyelesaiannya adalah {(6, 1), (9, 4)}


Komentar

Postingan populer dari blog ini

Perbandingan Trigonometri pada Segitiga Siku-siku

Pengukuran Sudut

Fungsi : Linear, Kuadrat, Rasional, Irasional dan Grafiknya